《高等数学(英文版 套装1-2册)》分上、下两册出版.上册共七章,着重介绍一元微积分学的基础理论知识,内容包括函数、极限、函数连续性,导数、微分及其应用,不定积分、定积分及其应用;下册共六章,着重介绍多元微分学的基础理论知识.内容包括无穷级数、向量代数与空间解析几何,多元函数、极限及其连续性,多元函数的微分及应用,重积分、曲线积分、曲面积分及常微分方程。
《高等数学(英文版 套装1-2册)》是基于多年教学经验,兼顾国内工科类本科数学基础要求和海外学习的双重需要编写而成的,与经典的中文微积分教材相比,《高等数学(英文版 套装1-2册)》适当降低了难度,突出了微积分学和后续应用型课程中常用的计算和证明方法.在保证教材内容符合学科要求且不低于本科阶段微积分课程教学标准的前提下,力求语言精准、简练,以适应我国学生的外语水平和学习特点。
《高等数学(英文版 套装1-2册)》适于作为工科院校的国际班、双语教学班的高等数学教材和参考书。
更多科学出版社服务,请扫码获取。
微积分历来是大学数学最重要的组成部分,是工科院校非数学专业学生必修的一门数学基础课程.本课程是运用数学概念、理论或方法去研究现实世界的空间形式和数量关系.通过本课程的学习,培养学生综合分析、解决问题等逻辑思维能力,使其学会将问题化难为易、化繁为简,激发其创新意识.本教材分上、下两册出版.上册共七章,着重介绍一元微积分学的基础理论知识.内容包括函数、极限、函数连续性,导数、微分及其应用,不定积分、定积分及其应用;下册共六章,着重介绍多元微分学的基础理论知识,内容包括无穷级数、向量代数与空间解析几何,多元函数、极限及其连续性,多元函数的微分及应用,重积分、曲线积分、曲面积分及常微分方程。
为了使我国的高等教育尽快与国际接轨,国家教育部出台了一系列倡导高校开设英语授课或双语教学的国际班的相关政策.目前,大部分高校多采用将母语外的另一种外国语言(主要指英语)直接应用于非语言类课程教学,并使外语与学科知识同步获取的一种教学模式.但是,由于国内外高校授课方式的差异,直接使用外文原版教材根本无法达到国际班的教学目的.也就是,国际班的教学内容及教学方式仍处于探索阶段.鉴于此,我们兼顾中文教材的理论严谨性和外文原版教材的重实际应用,适当降低了中文教材的难度,突出了微积分学中实用的计算和证明方法,力求语言简练,通俗易懂,编制了适用于理工科本科国际班的高等数学教材。
在本书的编写过程中,我们严格遵循从直观到抽象、由浅入深、由易到难等循序渐进的原则,概念清晰,内容简练,语言通俗易懂,便于自学与教学.上、下册内容,各需60学时,即可完成全部教学内容。
本书的编写得到了“十二五”期间北京科技大学教材建设经费资助,在此表示感谢,北京科技大学汪飞星教授与北京理工大学蒋立宁教授审阅了全部书稿,并提出了许多中肯的意见和建议,伦敦国王学院SamBeatson博士和香港大学SiumingYiu副教授分别对书稿上册和下册进行了语言润色与修改,编者向以上同志致以最诚挚的谢意。
Contents
Chapter lPreliruinaries 1
I.I Some Set Theory Notation for the Study of Calculus 1
1.1.1 Definition of Set 1
1.1.2 Descriptions of set 1
1.1.3 Set Operations 2
1.1.4 Interval 3
1.1.5 Neighbourhood 3
1.2 The Rectangular Coordinate System 3
1.2.1 Cartesian Coordinates 3
1.2.2 Distance Formula 4
1.2.3 The Equation of a Circle 4
1.3 The Straight Line 6
1.3.1 The Slope of' a Line 6
1.3.2 The Equation of a Line 6
1.4 Graphs of Equations 7
1.4.1 The Graphing Procedure 7
1.4.2 Symmetry of a Graph 7
1.4.3 Intercepts 9
1.4.4 Problems for Chapter 10
Chapter 2Functions and Limits 12
2.1 Functions 12
2.1.1 Definition of Function 12
2.1.2 Properties of Functions 14
2.1.3 0perations on Functions 16
2.1.4 Elementary Functions 18
2.1.5 Problems for Section 2.1 19
2.2 Limits 20
2.2.1 Introduction to Limits 20
2.2.2 Definition of Limit 99
2.2.3 0perations on Limits 25
2.2.4 Limits at Infinity and Infinite Limits 29
2.2.5 Infinitely Small Quantity (or Infinitesimal) 33
2.2.6 Problems for Section 2.2 35
2.3 Continuity of Functions 36
2.3.1 Definition of Continuity 36
2.3.2 Continuity under Function Operations 38
2.3.3 Continuity of Elementary Functions 38
2.3.4 Intermediate Value Theorem 39
2.3.5 Problems for Section 2.3 39
2.4 Chapter Review 40
2.4.1 Drills 40
2.4.2 Sample Test Problems 41
Chapter 3 Differentiation 43
3.1 Derivatives 43
3.1.1 Two Problems with One Theme 43
3.1.2 Definition 45
3.1.3 Rules for Finding Derivatives 45
3.1.4 Problems for Section 3.1 52
3.2 Higher-Order Derivatives 53
3.2.1 Definition 53
3.2.2 Sum, Difference and Product Rules 55
3.2.3 Problems for Section 3.2 56
3.3 Implicit Differentiation 57
3.3.1 Guidelines for implicit Differentiation 57
3.3.2 Related Rates 59
3.3.3 Problems for Section 3.3 61
3.4 Differentials and Approximations 62
3.4.1 Definition of Differential 62
3.4.2 Differential Rules63
3.4.3 Approximations 64
3.4.4 Problems for Section 3.4 67
3.5 Chapter Review 68
3.5.1 Drills 68
3.5.2 Sample Test Problems 69
Chapter 4 Applications of Differentiation 70
4.1 Maxima and Minima 70
4.1.1 Extrema on an Interval 70
4.1.2 Problems for Section 4.1 74
4.2 Monotonicity and Concavity 75
4.2.1 The First Derivative and Monotonicity 75
4.2.2 The Second Derivative and Concavity 77
4.2.3 Problems for Section 4.2 81
4.3 Local Maxima and Minima 82
4.3.1 Definition 82
4.3.2 Tests for Local Maxima and Minima 82
4.3.3 More Maxima and Minima Problems 84
4.3.4 Problems for Section 4.3 87
4.4 Sophisticated Graphing 88
4.4.1 Asymptote 88
4.4.2 Sophisticated Graphing 90
4.4.3 Problems for Section 4.4 94
4.5 The Mean Value Theorem 94
4.5.1 Rolle's Theorem 94
4.5.2 Lagrange's Mean Value Theorem 96
4.5.3 Cauchy's Mean Value Theorem 99
4.5.4 Problems for Section 4.5 99
4.6 L'Hopital's Rule 100
4.6.1 Indeterminate Forms of Type 100
4.6.2 Indeterminate Forms of Type里 101
4.6.3 0ther Indeterminate Forms 102
4.6.4 Problems for Section 4.6 103
4.7 Chapter Review 104
4.7.1 Drills 104
4.7.2 Sample Test Problems 106
Chapter5 Indefinite Integrals 108
5.1 Definition and Properties of Indefinite Integrals 108
5.1.1 Definition of Indefinite Integrals 108
5.1.2 Standard Integral Forms 110
5.1.3 Properties of' Indefinite Integrals 111
5.1.4 Problems for Section 5.1 113
5.2 Integration by Substitution 114
5.2.1 The Mehod of Substitution 114
5.2.2 Rationalizing Substitutions 121
5.2.3 0ther Substitutions (Inverse) 125
5.2.4 Problems for Section 5.2 126
5.3 Integration by Parts 127
5.3.1 Problems for Section 5.3 132
5.4 Integration of Rational Functions 132
5.4.1 Partial Fraction Decompositions 133
5.4.2 Integration of Rational Functions Using Partial Fractions 135
5.4.3 Problems for Section 5.4 137
5.5 Chapter Review 137
5.5.1 Drills 137
5.5.2 Sample Test Problems 138
Chapter6 Definite Integrals 140
6.1 Definition and Properties of Definite Integrals 140
6.1.1 Two Problems 140
6.1.2 Definition of Definite Integrals 143
6.1.3 Existence of' Definite Integrals 145
6.1.4 Geometric Interpretation 145
6.1.5 Properties of Definite Integrals 149
6.1.6 Problems for Section 6.1 152
6.2 Fundamental Theorem of Calculus 153
6.2.1 Problems for Section 6.2 157
6.3 Evaluation of Definite Integrals 158
6.3.1 Integration by Substitution 158
6.3.2 Integration by Parts 161
6.3.3 Problems for Section 6.3 163
6.4 hnproper Integrals 164
6.4.1 Infinite Limits of Integration 164
6.4.2 Infinite Integrands 166
6.4.3 Problems for Section 6.4 168
6.5 Chapter Review 169
6.5.1 Drills 169
6.5.2 Sample Test Problems 169
Chapter7 Applications of Integration 172
7.1 The Area of a Plane Region 172
7.1.1 Problems for Section 7.1 175
7.2 Volumes of Solids: Slabs, Disks and Washers 175
7.2.1 Volume of a Cylinder and a Solid 175
7.2.2 Solids of' Revolution: Disk Method 177
7.2.3 0ther Examples 180
7.2.4 Problems for Section 7.2 181
7.3 Volumes of Solids of Revolution: Shells 182
7.3.1 Problems for Section 7.3 185
7.4 Length of a Plane Curve 185
7.4.1 Problems for Section 7.4 189