《高等数学(下册)》分上、下两册, 上册内容包括函数与极限、导数与微分、微分中值定理与导数的应用、空间解析几何、多元函数微分法及其应用. 下册内容包括不定积分、定积分、定积分的应用、重积分、曲线积分与曲面积分、无穷级数、微分方程初步. 《高等数学(下册)》每节都配有习题,每章配有总习题和历年考研题. 《高等数学(下册)》配套的辅助教材有《高等数学典型问题与应用案例剖析(上、下册)》.
更多科学出版社服务,请扫码获取。
《高等数学(下册)》是作者多年教学经验的总结, 可作为非数学专业学生高等数学的教材, 也可作为相关人员的参考书.
第六章 不定积分
第六、七、八章的内容统称为一元函数的积分学.积分学与微分学密切联系,共同组成了分析学的基本内容.积分学的产生与发展源于一些实际问题的解决,如两千多年前的希腊数学家阿基米德(Archimedes)用穷竭法计算出了抛物线弓形的面积,我国南北朝时期的祖冲之和他的儿子祖也曾推导出某些图形的面积和体积,这些都是用无限小过程处理特殊形状的面积的例子.虽然求积问题自古以来就被直观地、经验地理解着,并且得到了正确的计算结果,但这只是个别问题的解决,始终缺乏一般的计算方法,与一门系统学科的形成还相距甚远.
直到十七世纪,由于天文、航海以及生产技术的发展,大量的问题亟待解决,这些问题大致归为以下四类:第一类是已知距离求速度与加速度以及已知加速度,求速度与距离;第二类是求曲线的切线;第三类是求函数的最大、最小值;第四类是求曲线的长度、曲线围成的面积、曲面围成的体积以及两个物体之间的引力.虽然在一些数学家的努力下,有关微分学问题解决得比较圆满,积分学中的某些问题也得到了一些好的结果,但是当时所使用的方法要么不具有普遍性,要么有的方法本身虽然孕育着有普遍性的含义,但却没有人能充分理解微分与积分这两类问题之间的相互关系的重要意义,因而都没有创立微积分.最终,牛顿和莱布尼茨在总结前的方法的基础上,都各自独立地看到了积分问题是微分的逆问题,并建立起成熟的具有普遍意义的方法.由于牛顿和莱布尼茨各自研究的角度不同,牛顿是利用导数与反导数,即不定积分来解决微积分问题,而莱布尼茨则强调微分及\微分的和",因而就形成了不定积分与定积分.
第一节不定积分的概念与性质