《高等数学(第7版上十二五普通高等教育本科国家级规划教材)》是同济大学数学系编的《高等数学》第七版的上册,从整体上说与第六版没有大的变化,内容深广度符合“工科类本科数学基础课程教学基本要求”,适合高等院校工科类各专业学生使用。
本次修订遵循“坚持改革、不断锤炼、打造精品”的要求,对第六版中个别概念的定义,少量定理、公式的证明及定理的假设条件作了一些重要修改;对全书的文字表达、记号的采用进行了仔细推敲;个别内容的安排作了一些调整,习题配置予以进一步充实、丰富,对少量习题作了更换。所有这些修订都是为了使本书更加完善,更好地满足教学需要。
《高等数学》分上、下两册出版,上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程等内容,书末还附有二阶和三阶行列式简介、基本初等函数的图形、几种常用的曲线、积分表、习题答案与提示。
第一章 函数与极限 第一节 映射与函数 一、映射 二、函数 习题1-1 第二节 数列的极限 一、数列极限的定义 二、收敛数列的性质 习题1-2 第一章 函数与极限 第一节 映射与函数 一、映射 二、函数 习题1-1 第二节 数列的极限 一、数列极限的定义 二、收敛数列的性质 习题1-2 第三节 函数的极限 一、函数极限的定义 二、函数极限的性质 习题1-3 第四节 无穷小与无穷大 一、无穷小 二、无穷大 习题1-4 第五节 极限运算法则 习题1-5 第六节 极限存在准则两个重要极限 习题1-6 第七节 无穷小的比较 习题1-7 第八节 函数的连续性与间断点 一、函数的连续性 二、函数的间断点 习题1-8 第九节 连续函数的运算与初等函数的连续性 一、连续函数的和、差、积、商的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 习题1-9 第十节 闭区间上连续函数的性质 一、有界性与最大值最小值定理 二、零点定理与介值定理 三、一致连续性 习题1-10 总习题第二章 导数与微分 第一节 导数概念 一、引例 二、导数的定义 三、导数的几何意义 四、函数可导性与连续性的关系 习题2-1 第二节 函数的求导法则 一、函数的和、差、积、商的求导法则 二、反函数的求导法则 三、复合函数的求导法则 四、基本求导法则与导数公式 习题2-2 第三节 高阶导数 习题2-3 第四节 隐函数及由参数方程所确定的函数的导数 相关变化率 一、隐函数的导数 二、由参数方程所确定的函数的导数 三、相关变化率 习题2-4 第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算法则 四、微分在近似计算中的应用 习题2-5 总习题二第三章 微分中值定理与导数的应用 第一节 微分中值定理 一、罗尔定理 二、拉格朗日中值定理 三、柯西中值定理 习题3-1 第二节 洛必达法则 习题3-2 第三节 泰勒公式 习题3-3 第四节 函数的单调性与曲线的凹凸性 一、函数单调性的判定法 二、曲线的凹凸性与拐点 习题3-4 第五节 函数的极值与最大值最小值 一、函数的极值及其求法 二、最大值最小值问题 习题3-5 第六节 函数图形的描绘 习题3-6 第七节 曲率 一、弧微分 二、曲率及其计算公式 三、曲率圆与曲率半径 四、曲率中心的计算公式 渐屈线与渐伸线 习题3-7 第八节 方程的近似解 一、二分法 二、切线法 三、割线法 习题3-8 总习题三第四章 不定积分 第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质 习题4-1 第二节 换元积分法 一、第一类换元法 二、第二类换元法 习题4-2 第三节 分部积分法 习题4-3 第四节 有理函数的积分 一、有理函数的积分 二、可化为有理函数的积分举例 习题4-4 第五节 积分表的使用 习题4-5 总习题四第五章 定积分 第一节 定积分的概念与性质 一、定积分问题举例 二、定积分的定义 三、定积分的近似计算 四、定积分的性质 习题5-1 第二节 微积分基本公式 一、变速直线运动中位置函数与速度函数之间的联系 二、积分上限的函数及其导数 三、牛顿-莱布尼茨公式 习题5-2 第三节 定积分的换元法和分部积分法 一、定积分的换元法 二、定积分的分部积分法 习题5-3 第四节 反常积分 一、无穷限的反常积分 二、无界函数的反常积分 习题5-4 第五节 反常积分的审敛法 Γ函数 一、无穷限反常积分的审敛法 二、无界函数的反常积分的审敛法 三、Γ函数 习题5-5 总习题五第六章 定积分的应用 第一节 定积分的元素法 第二节 定积分在几何学上的应用 一、平面图形的面积(276) 二、体积(2s0) 三、平面曲线的弧长(284) 习题6-2(2s6) 第三节 定积分在物理学上的应用 一、变力沿直线所作的功 二、水压力 三、引力 习题6-3 总习题六第七章 微分方程. 第一节 微分方程的基本概念 习题7-1 第二节 可分离变量的微分方程 习题7-2 第三节 齐次方程 一、齐次方程 二、可化为齐次的方程 习题7-3 第四节 一阶线性微分方程 一、线性方程 二、伯努利方程 习题7-4 第五节 可降阶的高阶微分方程 一、y(n)=f(x)型的微分方程 二、yn=f(x,y')型的微分方程 三、y''=(y,y')型的微分方程 习题7-5 第六节 高阶线性微分方程 一、二阶线性微分方程举例 二、线性微分方程的解的结构 三、常数变易法 习题7-6 第七节 常系数齐次线性微分方程. 习题7-7 第八节 常系数非齐次线性微分方程 一、f(x)=eλxPm(x)型 二、f(x)=eλx[P1(z)cos wx+Qn(x)sin wx]型 习题7-8 第九节 欧拉方程 习题7-9 第十节 常系数线性微分方程组解法举例 习题7-10 总习题七附录Ⅰ 二阶和三阶行列式简介附录Ⅱ 基本初等函数的图形附录Ⅲ 几种常用的曲线附录Ⅳ 积分表习题答案与提示