本书是在美国大学使用较为广泛的为本科生编写的电磁学教材。比较传统,但是仍然在如何帮助学生更好地学习电磁学课程做了不少努力。例如,提供不少和实际联系较为紧密的例子,讲解详细的例题以及提供不少使用计算机解决问题的算例。
《电磁学》(影印版)的难度和国内教学要求比较接近,可作为物理类专业电磁学课程的教材,尤其适合开展双语教学的学校,对于有志出国深造的人员也是一本必不可少的参考书。
1 History and Perspective
1.1 Brief History of the Science of Electromagnetism
1.2 Electromagnetism in the Standard Model
2 Vector Calculus
2.1 Vector Algebra
2.1.1 Definitions
2.1.2 Addition and Multiplication of Vectors
2.1.3 Vector Product Identities
2.1.4 Geometric Meanings
2.2 Vector Differential Operators
2.2.1 Gradient of a Scalar Function
2.2.2 Divergence of a Vector Function
2.2.3 Curl of a Vector Function
2.2.4 Del Identities
2.3 Integral Theorems
2.3.1 Gausss Theorem
2.3.2 Stokess Theorem
2.3.3 Vector Calculus in Fluid Mechanics
2.4 Curvilinear Coordinates
2.4.1 General Derivations
2.4.2 Cartesian, Cylindrical, and Spherical Coordinates
2.5 The Helmholtz Theorem
3 Basic Principles of Electrostatics
3.1 Coulombs Law
3.1.1 The Superposition Principle
3.2 The Electric Field
3.2.1 Definition
3.2.2 Charge as the Source of E
3.2.3 Field of a Charge Continuum
3.3 Curl and Divergence of E
3.3.1 FieldTheoryVersusAction at aDistance
3.3.2 Boundary Conditions of the Electrostatic Field
3.4 The Integral Forill of GaussS Law
3.4.1 Flux and Charge
3.4.2 Proof of Gausss Law
3.4.3 CalculationsBased onGausssLaw
3.5 GreenS Function and the Dirac delta Function
3.5.1 The Dirac delta Function
3.5.2 Another ProofofGaussS Law
3.6 The Electric Potential
3.6.1 Definition and Construction
3.6.2 PoissonS Equation
3.6.3 Example Calculations of V(x)
3.7 Energy of the Electric Field
3.8 The Multipole Expansion
3.8.1 Two Charges
3.8.2 The Electric Dipole
3.8.3 Moments ofaGeneralChargeDistribution
3.8.4 EquipotentialS and Field Lines
3.8.5 Torque and Potential Energy for a Dipole in an Electric Field
3.9 Applications
3.10 Chapter Summary
4 ElectrOstatics and Conductors
4.1 Electrostatic properties of coriductors
4.2 Electrostatic Problems with Rectangular Symmetry
4.2.1 Charged Plates
4.2.2 Problems with Rectangular Symmetry and External Point Charges.The Method ofImages
4.3 Problems with Spherical Symmetry
4.3.1 Charged Spheres
4.3.2 Problems with Spherical Symmetry and External Charges
4.4 Problems with Cylindrical Symmetry
4.4.1 Charged Lines and Cylinders
4.4.2 Problems with Cylindrical Symmetry and an External Line Charge
5 General Methods for Laplaces Equation
5.1 Separation of Variables for Cartesian Coordinates
5.1.1 Separable Solutions for Cartesian Coordinates
5.1.2 Examples
5.2 Separation of Variables for Spherical Polar Coordinates
5.2.1 Separable Solutions for Spherical Coordinates
5.2.2 Legendre Polynomials
5.2.3 Examples with Spherical Boundaries
5.3 Separation of Variables for Cylindrical Coordinates
5.3.1 Separable Solutions for Cylindrical Coordinates
5.4 Conjugate Functions in 2 Dimensions
5.5 Iterative Relaxation: A Numerical Method
6 Electrostatics and