《数学建模与实践》是基于作者多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关书籍的丰富经验编写而成的。本书是作者对《数学建模》一书的修订,除保留了前三版的大部分内容外,根据读者的反馈进行了补充与修订,尤其在第5章增加了求解实际问题的MATLAB程序设计。全书分为入门篇和进阶篇。入门篇内容包括数学模
本书通过经济管理、社会生活、物理化学、工程技术中众多数学模型的实例,系统、详实地阐述数学建模与数学实验的基本理论和主要方法。分别介绍代数模型、方程模型、线性规划模型、非线性规划模型、概率模型、统计模型、蒙特卡洛模拟、图论模型、近世算法等,注重数学建模方法的介绍,重视数学模型的科学表达,并重点讲解模型在MATLAB中的编
本书分为四个部分:第一部分介绍了基本概念和ZU的公理;第二部分讨论了如何由此引出自然数、实数、线等概念;第三部分的主题是基数和序数;第四部分主要讨论了选择公理和连续统假设。本书不仅由浅入深地呈现了集合论领域的技术手段和证明结论,还论述了这些工作背后的哲学动机,可以让读者了解那些貌似繁杂冗长的技术细节背后的哲学思考。
本书分11章,内容涉及数学建模简介、Python编程基础与科学计算、常微分方程及差分方程方法、偏微分方程、插值与拟合方法、**化方法、图论方法、排队论、回归分析、因子分析、时间序列预测分析方法。第3—11章每章先给出历史沿革,然后进行方法简介,最后结合实例讲解建模方法,配合数学软件的介绍和使用,加强建模求解过程的基本训
本书是髙等学校数学建模课程教材,共12章,包括数学建校概述、初等模型、微分方程模型、差分方程模型、概率与随机模型、数学规划模型、数据处理模型、问归分析模型、分类模型、评价模型、预测模型、现代优化算法。本书以数学建模方法为主线,以解决社会生活和生产符理等领域中的实际问题为切入点,着重介绍解决问题的数学建模思想方法和基本过
逻辑定理的机器证明是人工智能领域人们最早从事研究的课题。本书从逻辑定理的人工证明和机器证明两方面来展现逻辑定理证明的艺术,而机器证明又从定理的自动证明和计算机辅助证明两个方面来展现。本书首先用作者构造的命题演算系统FPC和狭谓词演算系统FQC完成常用逻辑定理的人工证明(一种自然推理证明)。其次,用逻辑定理的机器证明工具
本书是Fred等三个美国流行病学模型专家、数学家合著的MathematicalModelsinEpidemiology一书的中译本。内容分流行病学的基本概念(包括各种类型的仓室模型、地方病模型、流行病模型、异质混合模型、媒介传播的疾病模型),特殊疾病的模型(包括结核病模型、艾滋病病毒/艾滋病(HIV/AIDS)模型、流
本书是在2015年科学出版社出版的《数学模型及其应用》(第二版)基础上吸取了读者和专家的意见修订而成。本书主要内容有绪论、初等模型、方程模型、预测模型、评价模型、优化模型、图论模型、概率模型、统计模型、高教社杯全国大学生数学建模竞赛真题等,每章后附相关习题,部分章后附有常用词汇中英文对照。本书完成教学约需40~60学时
本书按照工科学生数学建模能力培养要求编写,以巩固学生数学基础知识、培养学生专业复杂问题分析能力、增强学生计算软件应用能力,以及训练学生的实践能力和创新能力为目的,通过基础知识讲解、基本技能训练和应用创新实践等环节深入浅出地介绍了专业学科领域里的数学建模基础知识、相关计算软件的使用方法、复杂问题的研究方法和科技论文写作等
数理逻辑系统是形式语言、形式语义和证明的三位一体。《数理逻辑引论:计算机科学与系统的天然基础》讨论这类系统的核心思想、重要概念、组成部分、构建方法,以及它们与数学和计算机科学的紧密关系,解释数理逻辑系统中符号化语言、解释、模型等概念,研究递归、迭代、分解组合、模块化、等价替换等处理结构复杂性的方法和技术。正是这些概念、
本书利用数学建模方法讨论了人类社会和自然界中的33个话题,既包括对经典话题的全新阐释,也包含对若干全新话题的原创研磨,不仅解答了大众对于数学的最常见疑问:“数学有什么用?”更是以高中知识为主要工具、以数学建模为主要载体、以中学生能够理解的方式,展现了数学研究的基本过程和思维方式。33个话题充分体现了数学与生活的密切联系
本书内容以初等数学为主体内容,同时也渗透了后续高等数学中的一些思想概念,如:以整数为基础叙述了中国剩余定理,以坐标轴的旋转和平移运算化简平面上的二次曲线方程为例,说明这样的操作过程是线性代数中二次型化标准型的特例,最后一章介绍了古典概型概率的计算。整本书的内容既包含初等数学中重要知识点,同时也对这些知识点做了适当的补充
本书致力于适应普通本科高校的数学建模教学,力求做到内容简明扼要、浅显易懂,让学生既学到基本的建模方法,又有扩展学习的空间。本书采用了目前比较流行的Python语言进行数值实验。全书主要内容包括插值与拟合、微分方程、图与网络优化、线性规划、非线性规划、数据的统计描述、统计分析、综合评价方法等。本书还提供所有例题的Pyth
本书首先简要介绍了数理逻辑的发展、形式系统及一些预备知识,然后介绍了集合论,详细讲解了命题演算、谓词演算、可计算性理论和哥德尔不完全性定理,最后介绍了模型论的基础知识和方法。全书重点突出,论证详细,各部分内容配有典型的例子和习题,以便读者更好地理解、掌握相关知识。
《数学建模基础及应用》既是编者在西南交通大学多年教学经验的总结,也是编者长期组织学生参加各类数学建模比赛的经验集成。《数学建模基础及应用》共9章,内容包含数学建模概述、数学规划模型、图论方法、数理统计模型、综合评价方法、预测方法、方程模型、其他模型、现代优化算法等。在编写过程中,力求做到以下几点:,系统性强,《数学建模
《数学建模方法与实践》内容包括线性规划、非线性规划、动态规划、国论基础、组合数学、多元统计分析、微分方程建模分析、数值计算等。每章为一个相对独立的数学方法与建模实践单元。通过学习,可以使读者掌握基本数学方法,同时培养读者对实际问题的理解能力、从具体到抽象的分析能力、算法设计与编程能力、综合概括与结果分析能力等。
《全国大学生数学建模竞赛A题优秀论文评述》精选了陆军军医大学(原第三军医大学)2007-2017年获全国大学生数学建模竞赛奖项的A题很好论文,从模型建立、求解方法、论文写作等多方面评优点、论不足、述改进,力求保持论文原味,让读者通过阅读全面领悟论文建模方法,快速提高数学建模能力。因此,特别推荐《全国大学生数学建模竞赛A
《全国大学生数学建模竞赛B题优秀论文评述》精选了陆军军医大学(原第三军医大学)2009-2016年获全国大学生数学建模竞赛奖项的B题很好论文,从模型建立、求解方法、论文写作等多方面评优点、论不足、述改进,力求保持论文原味,让读者通过阅读全面领悟论文建模方法,快速提高数学建模能力。因此,特别推荐给参加各类数学建模竞赛的学
本书系统介绍序决策系统的优势粗糙集方法,包括属性约简的辨识矩阵方法、启发式方法及其加速算法和基于证据理论的方法,研究不完备序信息系统、区间值序决策系统和直觉模糊序信息系统的属性约简问题,提出序模糊决策系统的优势粗糙模糊集理论.
本书是安徽师范大学参加全国大学生数学建模竞赛和美国大学生数学建模竞赛获奖论文的选编,主要是从该校2006—2018年获全国一等奖、二等奖以及美国大学生数学建模竞赛一等奖的论文中精选出的15篇优秀论文编辑整理而成,每一篇独立成文。每一篇精选的获奖论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的