本书叙述流畅,含大量图形与例子,可供学完一元微积分的读者继续学习向量微积分(多元微积分)使用。书中定义严谨,论证严密。本书的特色有1.使用线性代数语言展示一元微积分与多元微积分的联系。2.含大量的图、表,展示多元微积分与解析几何的关系,有助于学生形象地理解各知识点。3.对例题充分讨论,明确主要理论及其应用技巧。4.练习
本书深入浅出地讲解了(一元)微积分的主要概念和核心思想,从基本函数出发,全面覆盖了极限、导数、积分、微分方程、参数方程等重要主题,运用图像、数值、代数方程和语言描述等多种方法来呈现,不仅详细介绍了微积分的理论知识,而且特别重视实际应用,同时配有大量练习,帮助读者提高计算能力和掌握解题方法。语言简洁流畅,内容通俗易懂,示
本书从电磁物理理论出发,重点阐述了在量子效应、尺寸效应和介质运动效应作用下的麦克斯韦方程最新拓展与应用,以及这些效应在纳米尺度电子和光学器件中的影响。这是迄今为止系统地介绍在此环境下麦克斯韦方程理论、实验和应用研究的最新拓展的首部专著。首先,讨论了麦克斯韦方程组与量子场论结合及其量子化,为量子电磁场技术前沿应用奠定了理
本书主要介绍了Zakharov-Kuznetsov(ZK)方程的物理和力学背景,在物理上和数学理论上开展的一系列理论研究,以及取得的一系列的重要成果,其中包括ZK方程的物理推导、二维ZK方程在Hs中局部适定性最佳结果、利用Martel-Merle方法证明在高维能量空间的渐近稳定性、ZK方程孤立子不稳定性的解的爆破性研究
《希尔伯特空间及应用导论(第3版)》是一部深入介绍希尔伯特空间理论及其广泛应用的教材。书中内容从内积空间和希尔伯特空间的基本概念出发,详细阐述了这些空间的几何性质和重要定理。同时,本书还通过丰富的实例和详尽的解释,展示了希尔伯特空间在傅里叶分析、积分方程、微分方程和量子力学等多个领域的实际应用。内容组织严谨,语言简洁明
不变子空间和约化子空间问题是泛函分析中的一个基本问题。算子的交换子和相似度可以帮助理解算子的结构。Toplitz算子是算子理论中一类重要的算子。算子的相似性是泛函分析中与不变子空间和约化子空间问题相关的一个有趣的话题。该书总结了Bergman空间、Dirichlet空间等解析函数空间中的相似和约化子空间问题。研究方法包
《索伯列夫空间(第2版)》是一部深入解析索伯列夫空间理论的匠心之作,由加拿大不列颠哥伦比亚大学的两位数学教授罗伯特·亚当斯与约翰·福尼尔合力打造。本书整体更新了第一版的内容,系统地介绍了索伯列夫空间的基本概念、主要性质及其嵌入特征,为读者提供了坚实的理论基础。书中详细阐述了索伯列夫空间在偏微
本书是华东师范大学数学专业研究生教学丛书之一,是分析方向的研究生教材。全书分为十一章,第1章介绍抽象分析中的常用空间;第2章讨论集合上的抽象测度和抽象积分;第3章讨论Lp-空间和Fourier分析;第4章介绍Hilbert空间中的基本定理及在Radon-Nikodym定理的证明、L2(Rn)上的Fourier变换和So
许多人认为,对于学习数学的学生来说,微积分是一门具有很大挑战性的科目。这本经典图书将改变你对微积分的这种认识,帮助你轻松掌握微积分的基础知识。本书最初由英国皇家学会会员、物理学家和科学史学家西尔维纳斯·菲利普斯·汤普森撰写,后来经过数次修订和完善,其中最近一次由美国著名数学家、科普作家马丁&
本书采用一种不同寻常的方法介绍数学分析,以展现数学证明的精妙之处。从构造数系和集合论等基础知识开始,覆盖级数、连续性、可微性、黎曼积分等重要内容,并逐渐深入到多元微积分、傅里叶分析、勒贝格积分等高等主题,叙述清晰,示例丰富,结合了严格性和直观性。本书在附录部分还讲解了数理逻辑基础和十进制,书中的习题和正文密切相关,有利