本书主要介绍了特定几何对象的拓扑领域,同时介绍了受其启发产生的相关知识。这些对象的范围相当广泛,包含从复射影曲面的经典扭结到实射影空间中的子空间的构形,在流形的拓扑学中探讨了多维空间的几何性质及其内在结构,在人工智能和机器学习以及模式识别等领域中,流形的概念被用来描述高维数据集的内在结构。本书包含的15篇论文,内容包含
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家AlexanderGrothendieck(19282014)在J.Dieudonné的协助下于20世纪5060年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时
你是否想过,三角钢琴为什么是它现在的样子?用吸管吹出的肥皂泡是什么形状?无论是在自然界,还是在人类制造的物品中,几何结构都无处不在,就连人体内部也同样如此。几千年来,人类一直对几何学神往不已。人类最早的一些文字记录中就包含几何图示。几何学不但源远流长,也是一门充满活力、至今仍在不断发展的学科。通过学习几何学这个有关形状
数学起源于五千年前的美索不达米亚,但作为将大小和方向融于一体的矢量概念,则直到19世纪才得到正式的命名。在它的辅助下,麦克斯韦的电磁理论、狄拉克的量子场论、诺特关于数学对称性与能量守恒的关联等重大发现不断突破了人们的认知。直至今日,全球定位系统、搜索引擎、人工智能生成文本等技术依然要仰仗矢量的强大作用。矢量和张量以及微
本书由田刚院士主编,主要介绍了几何分析领域近年来的最新研究进展,内容包括对称空间中最小曲面、具有非负Ricci曲率的完全K¨ahler流形、体积猜想、子流形、偏微分方程和黎曼几何、不变体系、几何可变体系、瞬变体系和刚片、自由度与辛几何、代数几何和物理中的超弦理论、Kaehler-Ricci孤立子唯一性,调和映射紧性,高
本书共分为四章,第1章主要讨论欧几里得空间及其数学结构。第2章阐述迫使我们超越欧几里得体系的思想。第3章讨论上述提到的宇宙空间和时间的融合问题,从这点上讲,力学和物理学的结果将起到很重要的作用。根据第2章和第3章中的思想构造的大厦在第4章中引导我们进入爱因斯坦的广义相对论,这在物理上意味着一种新的万有引力理论,也是后者
代数曲线和函数域的类域论分别是代数几何和代数数论中最重要最基本的知识,目前只有著名数学家J.-P.Serre的著作Groupsalgébriquesetcorpsdeclasses(1975)系统讨论了这两套理论,但该书晦涩难懂并有一些小漏洞。本书用Grothendieck发展的现代代数几何的语言和工具重新处理了代数曲
古希腊欧几里得的《几何原本》,是一本科学史上极具影响力的巨著。它从一些公设、公理和概念出发,以形式逻辑的方法,建立了人类历史上第一座宏伟的演绎推理大厦欧氏几何学。但《原本》篇幅较大、不易理解,本书对《原本》进行解读,选择了其中一些定理(以三角形内角和定理和毕达哥拉斯定理为重点),也介绍了尺规作图,形式逻辑以及《原本》对
基于黎曼几何的信息几何已经成为研究信息领域中非线性、随机性问题的重要工具。本书介绍信息几何的数学基础。全书共5章:第1章简要介绍信息几何的由来以及思想与方法;第2章介绍作为信息几何基础的微分几何与黎曼几何基础;第3章介绍信息几何涉及的李群与李代数的基本内容;第4章介绍正定矩阵流形的几何结构,包括在不同黎曼度量下的测地距
本书以降低样本复杂度为目标,建立了一系列高精度的缺失成分分析方法,首先提出了以多结构张量分解、贝叶斯张量环、非负张量环为代表的低秩张量表示模型,提升了当前张量补全方法的性能;其次构建了平滑张量树和可训练子空间张量补全模型,有效降低了补全算法的样本复杂度,为解决极少样本条件下的张量补全问题提供了新思路。